Abstract
Abstract
Threshold resonance arises on the lower bound of the continuous spectrum of a quantum waveguide (the Dirichlet problem for the Laplace operator), provided that for this value of the spectral parameter a nontrivial bounded solution exists which is either a trapped wave decaying at infinity or an almost standing wave stabilizing at infinity. In many problems in asymptotic analysis, it is important to be able to distinguish which of the waves initiates the threshold resonance; in this work we discuss several ways to clarify its properties. In addition, we demonstrate how the threshold resonance can be preserved by fine tuning the profile of the waveguide wall, and we obtain asymptotic expressions for the near-threshold eigenvalues appearing in the discrete or continuous spectrum when the threshold resonance is destroyed.
Bibliography: 60 titles.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献