Lower olefins from methane: recent advances

Author:

Kolesnichenko Natalya V.,Ezhova Natalya N.,Snatenkova Yulya M.

Abstract

Modern methods for methane conversion to lower olefins having from 2 to 4 carbon atoms per molecule are generalized. Multistage processing of methane into ethylene and propylene via syngas or methyl chloride and methods for direct conversion of CH4 to ethylene are described. Direct conversion of syngas to olefins as well as indirect routes of the process via methanol or dimethyl ether are considered. Particular attention is paid to innovative methods of olefin synthesis. Recent achievements in the design of catalysts and development of new techniques for efficient implementation of oxidative coupling of methane and methanol conversion to olefins are analyzed and systematized. Advances in commercializing these processes are pointed out. Novel catalysts for Fischer – Tropsch synthesis of lower olefins from syngas and for innovative technique using oxide – zeolite hybrid catalytic systems are described. The promise of a new route to lower olefins by methane conversion via dimethyl ether is shown. Prospects for the synthesis of lower olefins via methyl chloride and using non-oxidative coupling of methane are discussed. The most efficient processes used for processing of methane to lower olefins are compared on the basis of degree of conversion of carbonaceous feed, possibility to integrate with available full-scale production, number of reaction stages and thermal load distribution. The bibliography includes 346 references.

Publisher

IOP Publishing

Subject

General Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boosting low temperature CO2 methanation by tailoring Co species of CoAlO catalysts;Chemical Engineering Science;2024-10

2. Direct conversion of natural gas to methanol;Advances in Natural Gas: Formation, Processing, and Applications. Volume 7: Natural Gas Products and Uses;2024

3. Concepts of Methane Activation;Methane Conversion Routes;2023-09-29

4. Mathematical Model of a Two-Temperature Medium of Gas–Solid Nanoparticles with Laser Methane Pyrolysis;Mathematical Models and Computer Simulations;2023-09-03

5. Particle-scale simulation on the effect of catalyst shape on the strongly exothermic Fischer–Tropsch synthesis process;Reaction Kinetics, Mechanisms and Catalysis;2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3