Author:
Tsivadze Aslan Yu.,Aksyutin Oleg E.,Ishkov Alexander G.,Knyazeva Marina K.,Solovtsova Olga V.,Men’shchikov Ilya E.,Fomkin Anatoly A.,Shkolin Andrey V.,Khozina Elena V.,Grachev Vladimir A.
Abstract
Natural gas (methane) forms an essential part of modern power supply. However, natural gas storage and transportation are associated with fire and explosion hazard, which restricts extensive application of natural gas as a fuel. The adsorption technique is among the most promising and safe ways for natural gas storage and transportation, which allows a significant increase in the methane density up to values characteristic of liquids as a result of physical adsorption in microporous adsorbents at moderate pressures. The review considers adsorption systems for natural gas (methane) storage based on metal-organic frameworks, which possess high characteristic energy of adsorption and a regular nanoporous structure with high pore volumes and specific surface areas. The possibility of controlling the porous structure and physicochemical behaviour of metal-organic frameworks during their synthesis and functionalization is analyzed, including the fabrication of composites and shaping, which may enhance their performance in the adsorption storage and transportation of natural gas.
The bibliography includes 315 references.
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献