Abstract
Abstract
The paper is devoted to the study of the boundary behaviour of solutions of a second-order elliptic equation. Criteria are established for the existence of a boundary value of a solution of the homogeneous equation under the same conditions on the coefficients of the equation as were used to establish that the Dirichlet problem with a boundary function in
,
1$?>
, has a unique solution. In particular, an analogue of Riesz’s well-known theorem (on the boundary values of an analytic function) is proved: if a family of norms in the space
of the traces of a solution on surfaces ‘parallel’ to the boundary is bounded, then this family of traces converges in
. This means that the solution of the equation under consideration is a solution of the Dirichlet problem with a certain boundary value in
. Estimates of the nontangential maximal function and of an analogue of the Luzin area integral hold for such a solution, which make it possible to claim that the boundary value is taken in a substantially stronger sense. Bibliography: 57 titles.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献