Femtosecond multiple filamentation of an optical vortex in the mid-IR wavelength range in fused silica and fluorides

Author:

Shlenov S.A.,Kompanets V.O.,Dergachev A.A.,Kandidov V.P.,Chekalin S.V.,Soifer F.I.

Abstract

Abstract The results of experimental and theoretical study of the self-action of femtosecond optical vortices in the region of anomalous group velocity dispersion in fused silica and fluorides are presented. Multiple filamentation of an axially asymmetric annular beam with a phase dislocation of topological charge m = 1 at a wavelength of 1800 nm in a LiF crystal is investigated. It is found that for the experimentally recorded intensity profile of a vortex beam with two maxima on the diameter, the critical self-focusing power is approximately two times larger than the critical power of a unimodal Gaussian beam. In pulses with supercritical power in the vicinity of the intensity maxima, two coupled filaments, separated by a phase dislocation, are formed on the annular profile of the optical vortex, which prevents energy exchange during their formation. The length of vortex-beam plasma channels in a single pulse is found to be about 300 μm at a diameter of about 2 μm, which is close to the characteristics of plasma channels in a Gaussian beam.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3