Abstract
Abstract
We introduce a function whose zeros, and only these zeros, are eigenvalues of the corresponding Sturm-Liouville problem. The boundary conditions of the problem depend continuously on the spectral parameter. Therefore, it makes sense to call the function thus constructed a characteristic function of the Sturm-Liouville problem (however, it is not a characteristic function in the ordinary sense). An investigation of the function thus obtained enables us to prove the solvability of the problem in question, to find the asymptotic behaviour of the eigenvalues, to obtain comparison theorems, and to introduce an indexing of the eigenvalues and the zeros of eigenfunctions in a natural way.
Bibliography: 31 titles.
Funder
Russian Science Foundation
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献