Measurement accuracy and spatial resolution of a distributed temperature sensor based on a two-pulse differential coherent reflectometer

Author:

Lukashova T.O.,Nanii O.E.,Nikitin S.P.,Treshchikov V.N.

Abstract

Abstract We present a model and numerical simulation of a distributed temperature sensor based on a two-pulse differential coherent optical time-domain reflectometer (COTDR). The differential phase measured using a phase-sensitive Rayleigh reflectometer is shown to have a regular component, which is a linear function of temperature, and a random component, which is related to a random distribution of scattering centres in the fibre and restricts the accuracy of measurements of variations in temperature. Measurement accuracy can be improved by reducing the relative contribution of the random component via a decrease in pulse duration and/or an increase in the time delay between pulses. The spatial resolution of a differential two-pulse phase-sensitive reflectometer is shown to be determined by the time delay between pulses and to vary little with pulse duration. At a typical pulse duration (200 ns) and delay time (300 ns), the accuracy in measurements of variations in temperature in the 0.1-K range is 2 % and the spatial resolution is about 30 m.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3