Abstract
Abstract
We prove that subharmonic or holomorphic functions of finite order on the plane, in space, or on the unit disc or ball that are bounded above on a sequence of circles or spheres, or on a system of embedded discs or balls, outside some asymptotically small sets are bounded above throughout. Hence, subharmonic functions of finite order on the complex plane, entire or plurisubharmonic functions of finite order, and also convex or harmonic functions of finite order that are bounded above on spheres outside such sets are constants. The results and the approaches to the proofs are new for both functions of one and several variables.
Bibliography: 14 titles.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献