A theoretical study of the group refractive index n g in a four-level inverted Y-type system formed by 87Rb atom – laser radiation interaction

Author:

Hazra R.,Hossain M.M.

Abstract

Abstract We report a theoretical investigation of the dispersion resulting from electromagnetically induced transparency (EIT) and the associated group refractive index profiles n g of a four-level inverted Y-type system formed by the interaction of three optical fields (probe, pump and control) with 87Rb atoms. The density matrix equations are derived from the semi-classical Liouville’s equation and solved both numerically and analytically to study the coherent nonlinear optical properties of the medium. We first present the EIT, dispersion and corresponding group index profiles n g under the switch-on/off and on/off-resonance conditions of the pump and control lasers. In presence of both pump and control lasers, an enhancement of the EIT window, a sharp EIT spike and related steeper dispersion slopes are obtained at the line centre of the probe frequency detuning. The group index profiles with the variation of the strengths of individual applied optical fields are studied. The effect of the ground state decoherence rates on the group index profile is examined in detail. It is found that the manipulation of n g values and the corresponding group velocities ν g of the probe light can be easily controlled from subluminal to superluminal values or vice versa by changing the strengths of the applied fields and the ground state decoherence rates. Besides, the EIT-based ‘optical switching’ phenomenon in the medium is explained by studying the variation of the group index with the pump and control Rabi frequencies.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3