Dynamical phenomena connected with stability loss of equilibria and periodic trajectories

Author:

Neishtadt A. I.,Treschev D. V.

Abstract

Abstract This is a study of a dynamical system depending on a parameter . Under the assumption that the system has a family of equilibrium positions or periodic trajectories smoothly depending on , the focus is on details of stability loss through various bifurcations (Poincaré–Andronov– Hopf, period-doubling, and so on). Two basic formulations of the problem are considered. In the first, is constant and the subject of the analysis is the phenomenon of a soft or hard loss of stability. In the second, varies slowly with time (the case of a dynamic bifurcation). In the simplest situation , where is a small parameter. More generally, may be a solution of a slow differential equation. In the case of a dynamic bifurcation the analysis is mainly focused around the phenomenon of stability loss delay. Bibliography: 88 titles.

Publisher

IOP Publishing

Subject

General Mathematics

Reference88 articles.

1. Mathematical problems in the theory of auto-oscillations;Andronov;I All-union conference on oscillations,1933

2. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian;Arnol’d;Uspekhi Mat. Nauk,1963

3. Geometrical Methods in the Theory of Ordinary Differential Equations

4. Catastrophe Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3