Role of contrast of a relativistic femtosecond laser pulse interacting with solid and structured targets

Author:

Ivanov K.A.,Shulyapov S.A.,Gorlova D.A.,Mordvintsev I.M.,Tsymbalov I.N.,Savel’ev A.B.

Abstract

Abstract We consider the effect of a pre-plasma layer inevitably present in experiments on the acceleration of electrons and ions during interaction of a relativistic femtosecond laser pulse with a dense plasma. The interaction regimes are identified in which the presence of such a layer can significantly increase the average and maximum energies of electrons. The regimes are discussed in which an artificial nanosecond prepulse makes it possible to produce a collimated electron beam with a high charge and an average energy of up to 10 ponderomotive energies in the direction of the reflected or incident laser beam. It is shown that the acceleration of ions, as a rule, requires an ultrahigh contrast of the laser pulse, since the parameters of the accelerated ion beams deteriorate significantly in the presence of preplasma or due to the evaporation of a thin-film target. The regimes of interaction of laser pulses with thick targets, in which heavy multiply charged ions can be accelerated by cleaning the surface with a prepulse, are also discussed. An essential part of the review is devoted to the interaction of radiation with micro- and nanostructured targets. Both the methods of their fabrication and the issues related to the interaction of a femtosecond laser pulse and its contrast with such structures are considered.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3