Structural and optical properties of nanoparticles formed by laser ablation of porous silicon in liquids: Perspectives in biophotonics

Author:

Zabotnov S.V.,Kurakina D.A.,Kashaev F.V.,Skobelkina A.V.,Kolchin A.V.,Kaminskaya T.P.,Khilov A.V.,Agrba P.D.,Sergeeva E.A.,Kashkarov P.K.,Kirillin M.Yu.,Golovan L.A.

Abstract

Abstract The paper discusses the possibility of manufacturing silicon nanoparticles, which are suitable for contrasting biological tissues imaged by optical coherence tomography, by femtosecond laser ablation of porous silicon in various liquids. The manufactured nanoparticles are characterised by average sizes of 87, 112, and 102 nm for cases of ablation in water, ethanol, and liquid nitrogen, respectively, as well as a relatively narrow size distribution, which provides additional advantages for subsequent delivery into biological tissues. Electrochemical etching, which results in the formation of layers of porous silicon, allows the yield of ablation products to be increased several-fold by lowering the ablation threshold, thereby increasing the light scattering efficiency of the prepared suspensions compared with the case of using crystalline silicon as targets. The possibility of obtaining high-contrast images of a biotissue phantom based on an agar gel with embedded nanoparticles is shown. The magnitude of the contrast depends on the liquid used for ablation and correlates with the values of the reduced scattering coefficient of the studied suspensions.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3