Author:
Vishnyakov G.N.,Ivanov A.D.,Levin G.G.,Minaev V.L.
Abstract
Abstract
We have numerically simulated the process of measuring stress – strain states by the method of speckle-shearing interferometry using the phase-shift technique. A computer model with the possibility of setting its strain and roughness is developed, which includes a model of a diffusely reflecting test object corresponding to the characteristics of a real membrane, as well as a speckle interferometer model that allows speckle interferograms to be obtained for different speckle sizes and angles between interfering beams. The process of reconstructing the object surface topogram from model speckle interferograms by the phase-shift technique is implemented. Using the developed models, a two-dimensional shearogram are obtained, which is a derivative of the strain field of a circular membrane. Comparison of the results of numerical simulation with experimental data shows that the differences (rms deviations) do not exceed 0.02 μm. It is also shown that the error of interferogram reconstruction by the phase-shift technique increases significantly when the test object strains exceed 12 μm.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献