Ba(Ce,Zr)O3-based electrodes for protonic ceramic electrochemical cells: towards highly compatible functionality and triple-conducting behaviour

Author:

Kasyanova Anna V.,Tarutina Liana R.,Rudenko Anna O.,Lyagaeva Julia G.,Medvedev Dmitry A.

Abstract

Protonic ceramic fuel cells and electrolysis cells represent low- and intermediate-temperature electrochemical devices, which allow chemical-to-electrical energy conversion with very high efficiency and low environmental impact. In order to ensure the long-term operability of these devices, as well as to provide for their up-scaling, a number of existing challenges associated with chemical and thermal incompatibilities pertaining to the functional materials remain to be overcome. This work presents a comprehensive overview of new electrode materials based on barium cerate/zirconate. The structural fragments of these materials are similar to those of the proton-conducting Ba(Ce,Zr)O3 electrolytes, which causes superior chemical compatibility between different functional materials. The primary emphasis of the research is on the functional properties of these materials such as chemical stability, thermal expansion behaviour and transport features. This in turn determines the electrochemical performance of the designed electrodes. In addition, the possibility of obtaining triple-conducting materials is discussed as means of designing electrodes with a high electrochemical active surface area required for the design of high-performance protonic ceramic fuel and electrolysis cells. The bibliography includes 208 references.

Publisher

IOP Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3