Author:
Yudin N.N.,Antipov O.L.,Gribenyukov A.I.,Eranov I.D.,Podzyvalov S.N.,Zinoviev M.M.,Voronin L.A.,Zhuravleva E.V.,Zykova M.P.
Abstract
Abstract
We report a study of the effect of postgrowth treatment of ZnGeP2 single crystals (low-temperature annealing, irradiation with fast electrons, polishing of working surfaces) and the conditions of exposure to repetitively pulsed laser radiation [wavelength (2091 or 1064 nm), pulse repetition rate, beam diameter, exposure time, sample temperature] on the laser-induced damage threshold (LIDT) of the surfaces of these crystals. It is found that thermal annealing of ZnGeP2 single crystals and their irradiation with a flux of fast electrons, which increase the LIDT at a wavelength of λ = 1064 nm, do not lead to a change in this threshold at λ = 2091 nm. It is shown that ZnGeP2 elements with lower optical losses in the spectral range 0.7 – 2.5 μm have a higher LIDT at λ = 2091 nm both immediately after fabrication and after postgrowth processing. An increase in the threshold energy density of laser radiation by a factor of 1.5 – 3 at λ = 2091 nm is revealed with a decrease in the crystal temperature from zero to –60 °C. The fact of reversible photodarkening of the propagation channel of laser radiation in ZnGeP2 in the predamage region of parameters is established by the method of digital holography.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics,Electronic, Optical and Magnetic Materials
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献