Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency

Author:

Pikalova Elena Yu.ORCID,Kalinina Elena G.

Abstract

Modern approaches to increasing the efficiency of solid-oxide fuel cells (SOFCs) based on electrolytic membranes with mixed conductivity are considered. These approaches are based on material-science concepts (expansion of the electrolytic domain boundary due to the doping of basic oxides and development of various composite materials) and various technological solutions (application of electron-blocking layers on the anode and cathode sides, rational selection of the electrolyte thickness, and optimization of the electrolyte and electrode structures by synthesizing heterostructures). The methods of mathematical modelling of devices with an electrolytic membrane having mixed conductivity are analyzed in order to determine the most efficient design and optimal operation conditions for SOFCs. The application of nanocomposite electrolytes with a core – shell structure and salt composites is considered. Data on new design solutions — single-layer and single-chamber SOFCs — are presented. The prospects of the proposed approaches are evaluated. The bibliography includes 384 references.

Publisher

IOP Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3