Artificial intelligence technologies in medicine. Problems of establishment

Author:

Borodulina E.1,Gribova V.2,Vdoushkina E.1

Affiliation:

1. Samara State Medical University, Ministry of Health of Russia

2. Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok

Abstract

In the period of global digitalization of society and healthcare, special attention is paid to the development of artificial intelligence (AI) technologies in medicine. To date, there are two main approaches to implementing AI technology based on machine learning methods and knowledge. In the former case, datasets are used; in the latter case, there is the knowledge acquired from scientific sources or experts. Each of the methods has both advantages and disadvantages. Medical decision support systems are being actively developed and implemented. But is everything so simple?

Publisher

Russian Vrach, Publishing House Ltd.

Reference17 articles.

1. Карцхия А.А. Цифровая медицина – реальность сегодняшнего дня. Экономические и социальные проблемы России. 2021; 2: 132–42 [Kartskhiya A.A. Digital medicine – todays' reality. Economic and social problems of Russia. 2021; 2: 132–42 (in Russ.)]. DOI: 10.31249/espr/2021.02.08

2. Лазарева М.М. Искусственный интеллект в разработке новых продуктов и приложений. Инновации. Наука. Образование. 2022; 49: 1147–50 [Lazareva M.M. Artificial intelligence in the development of new products and applications. Innovacii. Nauka. Obrazovanie. 2022; 49: 1147–50 (in Russ.)].

3. Гусев А.В., Владзимирский А.В., Шарова Д.Е. и др. Развитие исследований и разработок в сфере технологий искусственного интеллекта для здравоохранения в Российской Федерации: итоги 2021 года. Digital Diagnostics. 2022; 3 (3): 178–94 [Gusev A.V., Vladzymyrskyy A.V., Sharova D.E. et al. Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021. Digital Diagnostics. 2022; 3 (3): 178–94 (in Russ.)]. DOI: 10.17816/DD107367

4. Гольдина Т.А., Бурмистров В.А., Ефименко И.В. и др. Искусственный интеллект в здравоохранении: RealWorld Data и Patient Voice – готовы ли мы к новым реалиям? Медицинские технологии. Оценка и выбор. 2021; 2: 22–31 [Goldina T.A., Burmistrov V.A., Efimenko I.V. et al. Artificial Intelligence in Healthcare: Real World Data and Patient Voice – Are We Ready for New Realities? Medical Technologies. Assessment and Choice. 2021 2: 22–31 (in Russ.)]. DOI: 10.17116/medtech20214302122

5. Реброва О.Ю., Гусев А.В. Расчет объема выборки для клинических испытаний систем поддержки принятия врачебных решений с бинарным откликом. Современные технологии в медицине. 2022; 14 (3): 6–14 [Rebrova O.Yu., Gusev A.V. Sample size calculation for clinical trials of medical decision support systems with binary outcome. Sovremennye tehnologii v medicine. 2022; 14 (3): 6–14 (in Russ.)]. DOI: 10.17691/stm2022.14.3.01

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3