Implementation of computer vision technology based on artificial intelligence for medical image analysis

Author:

Ma Danqing,Dang Bo,Li Shaojie,Zang Hengyi,Dong Xinqi

Abstract

As one of the branches of machine learning, the deep learning model combined with artificial intelligence is widely used in the field of computer vision technology, and the image recognition field represented by medical image analysis is also developing. Its advantage is that it does not rely on human annotation, and the computer can recognize and process the feature information omitted by human beings during the model training process, so as to achieve or even exceed the accuracy of human processing. Based on the general lack of explain ability caused by the unknown data processing process in the deep model, the existing solutions mainly include the establishment of internal explain ability, attention mechanism interpretation of specific models, and the interpretation of unknowable models represented by LIME. The way to quantitatively assess interpretability is still being explored, especially in the interpretative assessment of both doctors and patients in medical decision-related models, several scales have been proposed for reference. The current research on the application of artificial intelligence deep learning models in medical imaging generally pays more attention to accuracy rather than explain ability, resulting in the lack of explain ability, and thus hindering the practical clinical application of deep learning models. Therefore, the need to analyze the development of medical image analysis in the field of artificial intelligence and computer vision technology, and how to balance accuracy and interpretability to develop deep learning models that both doctors and patients can trust will become the research focus of the industry in the future.

Publisher

Warwick Evans Publishing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From the Perspective of Explainable Machine Learning: A Student Feature Selection Strategy Based on the Geometric Mean of Feature Importance and Robustness;Proceedings of the 2024 International Conference on Computer and Multimedia Technology;2024-05-24

2. Ensemble Methodology: Innovations in Credit Default Prediction Using LightGBM, XGBoost, and LocalEnsemble;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

3. Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

4. Research on Image Processing Technology Based on Artificial Intelligence and Visual Algorithms;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

5. CrackNex: a Few-shot Low-light Crack Segmentation Model Based on Retinex Theory for UAV Inspections;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3