Structural features of synthetic glycoconjugates and efficiency of their interaction with glycoprotein receptors on the surface of hepatocytes

Author:

Nosova A. S.1ORCID,Budanova Yu. A.1ORCID,Sebyakin Yu. L.1ORCID

Affiliation:

1. MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)

Abstract

Objectives. Over the last few years, medicinal chemistry research has been focusing on the creation of molecules that can target particular body systems, organs and tissues, thus abating systemic toxicity and side effects, and, most of all, boosting therapeutic potential. This goal can be achieved through the specific interaction of such drugs with active sites of cellular receptors. For example, glycoprotein receptors that can be found on cellular surfaces in neural tissues and liver parenchyma, selectively bind various glycoproteins and glycosides, facilitating their penetration into cells. This review describes how certain parameters of ligand structure (the nature and length of the spacer between carbohydrate and non-carbohydrate fragments of the molecule, number of carbohydrate residues per molecule, etc.) influence the penetration efficiency of synthetic glycoconjugates into liver cells.Methods. This review article summarizes 75 research papers and discusses data from in vitro and in vivo experiments showing which structures of synthetic carbohydrate derivatives are optimal for targeted drug delivery into liver cells.Results. The surface of liver cells (hepatocytes) contains a significant number of asialoglycoprotein receptors (ASGP-R) that are almost never found elsewhere. This makes ASGP-R an ideal target for the directed treatment of liver diseases, including such difficult, socially important conditions as hepatocellular carcinoma and Hepatitis C. A number of various ligands and targeted (to ASGP-R) delivery systems have been designed. Such molecules always contain derivatives of mono- and disaccharides, most commonly D-glucose, D-galactose, D-lactose and N-acetylglucosamines. This review contains the chemical structures of carbohydrate-based ligands.Conclusions. Glycolipids based on D-carbohydrates, when in liposomes, facilitate penetration into liver cells by a receptor-mediated, clathrin-dependent endocytosis mechanism that is activated upon contact of the carbohydrate-containing ligand fragment with the active site of ASGP-R. It can be addressed by the use of monovalent derivatives of carbohydrates as well as polyvalent glycoconjugates. Alterations in the ligand structure and the number of liposomal modifications can boost the therapeutic effect. The distance between the liposomal surface and the carbohydrate residue (spacer length), as well as the hydrophilic-lipophilic balance of the ligand molecule, have a great effect on the affinity and cellular response.

Publisher

RTU MIREA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3