Synthesis and application of chromium complexes based on 4,5-bis(diphenylphosphanyl)-<i>H</i>-1,2,3-triazole ligands to obtain higher С<sub>10</sub>–С<sub>18</sub> olefins

Author:

Senin A. A.1ORCID,Polyanskii K. B.1ORCID,Sheloumov A. M.1ORCID,Afanasiev V. V.1ORCID,Yumasheva T. M.1ORCID,Rudyak K. B.1,Vorobyev S. V.2ORCID

Affiliation:

1. United Research and Development Center

2. National University of Oil and Gas (Gubkin University)

Abstract

Objectives. To synthesize 4,5-bis(diphenylphosphanyl)-H-1,2,3-triazole ligands and new chromium complexes based on them, in order to obtain a fraction of higher C10–C18 alpha-olefins from ethylene.Methods. The Schlenk technique was used to obtain the target chromium complexes. Diphenylphosphanyl triazole ligands can be characterized by nuclear magnetic resonance spectroscopy. The composition of the final products was confirmed by elemental analysis. The liquid phase of the oligomerization reaction was studied by gas chromatography.Results. L1–L9 ligands were obtained, and K1–K9 chromium complexes were synthesized based on the correspondent ligands using commercially available chromium (III) trichloride tris(tetrahydrofuran). The K1–K9 complexes thus obtained were tested in the process of ethylene oligomerization.Conclusions. Chromium complexes based on 4,5-bis(diphenylphosphanyl)-H-1,2,3-triazoles K1–K9 were produced in high yields using the Schlenk technique. It was found that systems based on the K4–K7 and K9 complexes enable the ethylene oligomerization process to be carried out with a sufficiently high level of productivity. It was shown that the introduction of a dialkyl zinc derivative increases the performance and selectivity of the catalytic system for the target fraction.

Publisher

RTU MIREA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3