SENSORS BASED ON PHOTONIC CRYSTALS

Author:

Kozlov A. A.1,Gavrilov Yu. A.2,Ivanov A. V.3,Aksenov A. S.1,Flid V. R.1

Affiliation:

1. Moscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)

2. N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences

3. Lomonosov Moscow State University

Abstract

Chemical sensors are one of the most demanded tools of modern analytical chemistry. Recently, devices based on the registration of color changes upon reflecting visible irradiation from the surface of so-called "photonic crystals" (PC) have begun to be used for analytical chemistry purposes. Some advantages of this method are the possibility of visual detection of substances, relatively high sensitivity, and the ability to change the properties of such sensors by varying the element base of the PC. The effect of various mechanical, electrical, optical, chemical and other factors on the objects under study leads to additional changes in the spectral responses from the PC surface with deposited materials. A sufficiently short response time allows the use of such sensors for the operational control of various substances with a high degree of hazard. In the long term, such devices can be used as test systems for the detection and analysis of a wide class of chemical and biological substances. This review is devoted to various types of sensors based on photonic crystals. It deals with: photonic crystals of natural and synthetic origin; various possible structures of PC; causes of the appearance of characteristic optical properties; detection of mechanical, thermal, electrical, magnetic and optical effects on the PC, as well as effects on organic compounds of various classes; areas of application of sensors based on PC.

Publisher

RTU MIREA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Colloidal photonic crystals with controlled morphology;Russian Chemical Bulletin;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3