Effect of relaxation processes during deformation on electrical resistivity of carbon black polypropylene composites

Author:

Markov A. V.1ORCID,Tarasova K. S.1,Markov V. A.1ORCID

Affiliation:

1. MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies

Abstract

Objectives. To study the relationship between bending deformation and the change in the electrical resistance of carbon black polypropylene composites.Methods. Conductive polypropylene composites filled with carbon black UM-76 were investigated. The samples were deformed and kept under constant bending at temperatures of 20–155 °C.Results. The deformation of the samples led to a reversible increase in their electrical resistance, while subsequent holding of the samples in the deformed state was accompanied by an exponential drop in their electrical resistance. The average times and activation energies of the electrical relaxation of the deformed polypropylene composites were calculated (30–32 kJ/mol) and compared with similar characteristics of polyethylene composites (15–16 kJ/mol).Conclusions. The electrical resistance relaxation of deformed carbon black polypropylene composites at elevated temperatures is similar to their stress relaxation. The average times and activation energies of the electrical relaxation of deformed polypropylene composites are comparable with similar data on their mechanical relaxation. It was found that these electrical and mechanical phenomena are based on the same underlying physical processes.

Publisher

RTU MIREA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3