Interaction of the anion [2-B<sub>10</sub>H<sub>9</sub>O(CH<sub>2</sub>)<sub>4</sub>O]− with secondary amines

Author:

Matveev E. Yu.1ORCID,Novikov S. S.2ORCID,Levitskaya V. Ya.2ORCID,Nichugovskiy A. I.2ORCID,Sokolov I. E.3ORCID,Zhizhin K. Yu.1ORCID,Kuznetsov N. T.4ORCID

Affiliation:

1. MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies); Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

2. MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)

3. MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies); Federal Research Center of Nutrition, Biotechnology and Food Safety

4. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Abstract

Objectives. One of the most promising methods of treating malignant tumors is 10B-neutron capture therapy. While compounds based on cluster boron anions [BnHn]2− (n = 10, 12) are often used as boron-containing agents due to the very high specific concentration of boron atoms per particle, the use of such compounds is associated with the need to develop new methods for the functionalization of boron clusters associated with the production of boron-containing derivatives containing biologically active functional groups. One of the most convenient methods of modification of [BnHn]2− (n = 10, 12) anions is the interaction of their derivatives containing cyclic oxonium-type substituents with negatively charged or neutral nucleophilic reagents. The disclosure of substituents of this type leads to the formation of closo-borates with functional groups separated from the cluster by an alkoxyl spacer chain. The purpose of this study is to develop methods for the synthesis of derivatives of the closo-decaborate anion [B10H10]2− with pendant nitrogen-containing groups.Methods. The general control of the reactions of the disclosure of cyclic substituents was carried out on the basis of 11B nuclear magnetic resonance (NMR) spectroscopy data. The structure of the obtained derivatives, including the nature of the attached functional groups, was determined using 1H, 13C attached proton test (APT) NMR and infrared (IR) spectroscopy data. The molecular weight of the synthesized compounds was confirmed by electrospray ionization mass-spectrometry (ESI–MS).Results. The interaction of the anion [2-B10H9O(CH2)4O]− with secondary amines (dimethylamine, dipropylamine, diallylamine, dibutylamine, diisobutylamine, morpholine, di-sec-butylamine) in an ethanol environment is investigated. As a result of the reactions, a cyclic substituent is shown to expand with the addition of a nucleophilic reagent. Seven new derivatives of the closodecaborate anion with pendant nitrogen-containing groups have been synthesized.Conclusions. A developed method for obtaining closo-decaborates with ammonium groups separated from the boron cluster by an alkoxyl spacer group is presented. It is shown that the use of amines of various structures does not fundamentally affect the course of the reactions, allowing the composition and structure of the target derivatives to be effectively regulated. The resulting compounds can be involved in further modification reactions due to a reactive pendant group, as well as being suitable for use as effective polydentate ligands. Closo-decaborates with pendant nitrogen-containing groups and their derivatives are of considerable interest in the synthesis of compounds for use in 10B-neutron capture therapy of malignant tumors.

Publisher

RTU MIREA

Subject

Inorganic Chemistry,Organic Chemistry,Fluid Flow and Transfer Processes,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3