The Stand for Research of Positional-Sensitive Photosensor

Author:

Chukita V. I.1,Senokosov E. A.1,Feshchenko V. S.2

Affiliation:

1. Shevchenko Pridnestrovian State University

2. Production-Technological Center «UralAlmazInvest», Ltd.

Abstract

The paper considers position-sensitive photodetectors (PSP), which are designed to detect the source of electromagnetic radiation in the optical range and determine the coordinates of the irradiated area in real time, as well as to track moving optical objects. In particular, data are presented on photodetectors based on photosensitive epitaxial CdSe/mica layers with an unconventional layout and switching of electrical contacts. The output signal of such PSP is the transverse potential difference that appears between its two contacts after exposure of one of the areas of the photodetector. These PSPs can be an alternative or competition to existing photocells due to high accuracy, speed, ease of manufacture and low cost. But there are significant obstacles for their wide application. First, it is an analog type of output signal, which prevents its further processing. And, second, it is difficult to calibrate “manually” a newly made photosensor: it takes a long time associated with the accumulation and processing of large amounts of data. The introduction of computer technology and the creation of an information-measuring system allow us to process the output signals of such photodetectors with high accuracy and speed in  real time. To solve this problem we have developed a stand for the study of position-sensitive photodetectors, which is presented in this paper. This stand allows digitizing the signal received from the photodetector, in real time, with high accuracy to determine the coordinates of the irradiated area on the photodetector and explore its characteristics such as the specified value of the dark current of the photodetector, light current at a certain illumination, and output voltage. At this stand, position-sensitive photodetectors based on the CdS/mica system were studied. It is shown that the characteristics and parameters of photoreceivers measured on this stand coincide with theoretical ones, within the error limits. Recommendations on the use of the standare given.

Publisher

RTU MIREA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3