Terahertz generation from surface of the bulk and monolayer tungsten diselenide

Author:

Khusyainov D. I.1ORCID,Gorbatova A. V.1,Buryakov A. M.1ORCID

Affiliation:

1. MIREA – Russian Technological University

Abstract

The study of ultrafast laser interaction with graphene-like materials based on transition metal dichalcogenides attracts most scientific groups. It is connected with potential use of these materials in flexible optoelectronic devices of visible and THz range. In this paper the parameters of generation of terahertz field from the surface of bulk layered crystal and monolayer film of tungsten diselenide are analyzed. Generation of terahertz radiation from the surface of experimental samples was studied by the terahertz time-domain spectroscopy in reflection geometry. Bulk layered crystals of tungsten diselenide were grown by gas transport reactions. Monolayers of tungsten diselenide crystals were grown by chemical vapor deposition on a silicon substrate. The bandwidth of the generated terahertz radiation from the surface of the bulk layered tungsten diselenide crystal was ~ 3.5 THz. For tungsten diselenide monolayer the spectrum bandwidth of the generated THz radiation was ~ 2.5 THz. The peak amplitude of the generated terahertz field for both samples was at a frequency of ~ 1 THz. Research of the influence of the angle of rotation of a polarization plane of optical femtosecond pump on peak-to-peak amplitude of the generated terahertz field from the surface of investigated samples was carried out. Symmetry analysis of the azimuthal dependence of THz radiation made it possible to separate the mechanisms of THz radiation and evaluate their contribution. The analysis results confirm that the only possible contribution to the generation of terahertz radiation in a tungsten diselenide monolayer crystal is the second order nonlinear optical effect – optical rectification. One of the contributions to the generation of tungsten diselenide is a nonlinear-optical effect of the third order – surface optical rectification.

Publisher

RTU MIREA

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate;Metals;2022-10-06

2. Sensitivity enhancement of two-dimensional WSe2-based photodetectors by ordered Ag plasmonic nanostructures;Applied Physics Express;2021-06-11

3. The second optical harmonic generation efficiency estimation in two-dimensional semiconductor heterostructures;PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019);2021

4. THz surface emission from bulk and monolayer WSe2;PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019);2021

5. Generation of the THz radiation in Mo0.5W0.5S2 solid solution;PROCEEDINGS OF INTERNATIONAL CONGRESS ON GRAPHENE, 2D MATERIALS AND APPLICATIONS (2D MATERIALS 2019);2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3