Ferroelectric memory: state-of-the-art manufacturing and research

Author:

Abdullaev D. A.1,Milovanov R. A.1,Volkov R. L.2,Borgardt N. I.2,Lantsev A. N.3,Vorotilov K. A.4ORCID,Sigov A. S.4

Affiliation:

1. MIREA – Russian Technological University; Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences

2. National Research University of Electronic Technology – MIET

3. CJSC Scan

4. MIREA – Russian Technological University

Abstract

Semiconductor industry calls for emerging memory, demonstrating high speed (like SRAM or DRAM), nonvolatility (like Flash NAND), high endurance and density, good scalability, reduced energy consumption and reasonable cost. Ferroelectric memory FRAM has been considered as one of the emerging memory technologies for over 20 years. FRAM uses polarization switching that provides low power consumption, nonvolatility, high speed and endurance, robust data retention, and resistance to data corruption via electric, magnetic fields and radiation. Despite the advantages, market share held by FRAM manufacturers is insignificant due to scaling challenges. State-of-the-art FRAM manufacturing is studied in this paper. Ferroelectric capacitors and memory cells made by main commercial FRAM manufactures (Texas Instruments, Cypress Semiconductor, Fujitsu и Lapis Semiconductor) are explored. All memory cells are based on the lead zirconate titanate PZT capacitor with the thickness of about 70 nm and IrOx/Ir or Pt electrodes. The leading FRAM technology remains the 130 nm node CMOS process developed at Texas Instruments fabs. New approaches to further scaling and new devices based on ferroelectrics are reviewed, including binary ferroelectrics deposited by ALD techniques, piezoelectronic transistors, ferroelectric/2D-semiconductor transistor structures, and others. Whether FRAM technology will be able to resolve one of the main contradictions between a high-speed processor and a relatively slow nonvolatile memory depends on the success of the new technologies integration.

Publisher

RTU MIREA

Reference105 articles.

1. Milovanov R.A., Kelm E.A. Structure of EEPROM and FLASH Memory Cells. Nano- i mikrosistemnaya tekhnika = J. NANO- and MICROSYSTEM Technique. 2015;4(177):45-59 (in Russ.).

2. Defaÿ E. Ferroelectric dielectrics integrated on silicon. N.Y.: John Wiley & Sons, 2013. 448 p.

3. Vorotilov K.A., Mukhortov V.M., Sigov A.S. Integrirovannye segnetoelektricheskie ustroistva (Integrated ferroelectric devices). (Ed.). A.S. Sigov. Moscow: Energoatomizdat; 2011. 175 p. (in Russ.). ISBN 978-5-283-00872-1

4. Vorotilov K.A., Sigov A.S. Ferroelectric memory. Phys. Solid State. 2012;54(5):894-899. https://doi.org/10.1134/S1063783412050460

5. Vorotilov K. A., Sigov A. S. Ferroelectric Random Access Memory: Prospect Technology and Materials. Physics of the Solid State. 2008;10(99):30-42 (in Russ.).

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3