Application of high-level methods of compromise optimization for control of autonomous robotized open pit mining

Author:

Golovin S. A.1,Zykov S. V.2,Korablin Yu. P.1,Kryukov D. A.1

Affiliation:

1. MIREA – Russian Technological University

2. NRU "Higher School of Economics"

Abstract

In most software engineering approaches, software design begins with defining functional requirements, which is well suited to web-based software development projects. When designing high-critical large-scale software intended for industrial use, accounting for non-functional software requirements is also required. The main idea of the proposed document-oriented approach is to design a stable architectural solution as early as possible, taking into account the nonfunctional characteristics of the software: reliability, security, maintainability and performance (quality attributes). At the same time, the key issue is the coordination of functional requirements, taking into account technical limitations and business requirements achieved during the steady interaction of customer and developer teams. To increase the flexibility of the designed solutions and prevent crisis situations when developing highly critical large-scale software, it is proposed to use the approach integrating the architecture-centric design method (ACDM), the architecture-tradeoff analysis method (ATAM) with a matrix enterprise architecture matrix (EAM). This allows getting a result that is adequate to the required level of responsibility and reliability. Consideration of quality attributes within the framework of the method of compromise analysis makes it possible to select and make certain decisions in software design taking into account the scale of the software and its scope. The main attributes of product quality are highlighted (ISO 25010 standard), critical scenarios are defined for each of them (templates and use cases). The use of these templates for detailed software design with the necessary parameters of functional requirements, business conditions and technological limitations reduces the risk of developing unpredictable and uncertain system behavior. Based on the proposed approach, an architectural solution is presented for highly critical, responsible, large-scale software for managing autonomous robotic open-pit mining of minerals. Critical attributes for creating the specified software were identified and ranked, and the architecture of the solution according to the SWEBOK software development standard was described. Further, taking into account the nature, scale and scope of the software solution, recommendations are given on high-level architectural templates for the system design, including layers, pipelines and microservices. The proposed architecture-oriented development method is suitable for industrial-level software in various subject areas.

Publisher

RTU MIREA

Reference13 articles.

1. Maranzano J.R., Rozsypal S.A., Zimmerman G.H., Warnken G.W.,Wirth P.E. Architecture reviews: practice and experience. IEEE Software. 2005;22(2):34-43. https://doi.org/10.1109/MS.2005.28

2. Ferber S., Heidl P., Lutz P. Reviewing Product Line Architectures: Experience Report of ATAM in an Automotive Context. In: van der Linden F. (Ed.) Software Product-Family Engineering. PFE 2001. Lecture Notes in Computer Science, V. 2290. Heidelberg Berlin, Heidelberg: Springer; 2002. P. 364-382. https://doi.org/10.1007/3-540-47833-7_33

3. Harley N. 11 of the most costly software errors in history, 2018. https://raygun.com/blog/costly-software-errors-history/

4. Clements P., Kazman R., Klein M. Evaluating Software Architecture: Methods and Case Studies. Addison-Wesley; 2002. 304 r.

5. Bass L., Clements P., Kazman R. Software Architecture in Practice (2nd Edition). Addison-Wesley; 2003. 560 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3