Measurement of capillary waves with a laser wave recorder

Author:

Sterlyadkin V. V.1ORCID,Kulikovsky K. V.1ORCID

Affiliation:

1. MIREA - Russian Technological University

Abstract

Objectives. Capillary waves on the sea surface play an important role in remote sensing, both in the optical and microwave wavelength ranges. However, processes of electromagnetic radiation scattering on a rough sea surface cannot be studied in the absence of reliable monitoring of the parameters of these capillary waves under natural conditions. Therefore, the aim of the present work was to develop methods for such monitoring purposes and test them under laboratory and field conditions.Methods. Novel laser-based methods for recording capillary waves at frequencies up to 100 Hz were developed in the laboratory. The proposed remote methods, which do not interfere with the sea surface, are based on the recording of scattered laser radiation using a video camera.Results. Under laboratory conditions, spatial profiles, time dependences of heights for all points of a laser sweep trajectory, and frequency power spectra were obtained. It is shown that slopes in capillary waves can reach 30° and that the amplitude of capillary waves at frequencies above 25 Hz does not exceed 0.5 mm. A new version of a scanning laser wave recorder was tested under natural conditions on an offshore platform. The measurements confirmed the possibility of measuring the parameters of sea waves on spatial scales covering 3 orders of magnitude: from units of millimeters to units of meters.Conclusions. The developed wave recorder can be used to carry out direct measurements of “instantaneous” sea surface profiles with a time synchronization precision of 10-4 s and a spatial accuracy of better than 0.5 mm. The method makes it possible to obtain large series (21000) of «instantaneous» wave profiles with a refresh rate of 60 Hz, which opens up opportunities for studying the physics of wave evolution and the influence of wave parameters on the scattering of electromagnetic waves. The advantage of the method is the direct nature of the measurement of applicates and other wave characteristics not only in time but also in space. The entirely remote method does not distort the properties of the surface and is not affected by wind, waves, or sea currents. The possibility of using the proposed method under natural conditions at any time of the day and in a wide range of weather conditions has been experimentally ascertained.

Publisher

RTU MIREA

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3