Comparative analysis of compression algorithms for four-dimensional light fields

Author:

Bolbakov R. G.1ORCID,Mordvinov V. A.1ORCID,Makarevich A. D.1ORCID

Affiliation:

1. MIREA - Russian Technological University

Abstract

Objectives. The widespread use of systems for capturing light fields is due to the high quality of the reproduced image. This type of capture, although qualitatively superior to traditional methods to capturing volumetric images, generates a huge amount of data needed to reconstruct the original captured 4D light field. The purpose of the work is to consider traditional and extended to four-dimensional image compression algorithms, to perform a comparative analysis and determine the most suitable.Methods. Mathematical methods of signal processing and methods of statistical analysis are used.Results. Algorithms are compared and analyzed in relation to the compression of four-dimensional light fields using the PSNR metric. The selected evaluation criterion is affected not only by the dimension of the compression algorithm, but also by the distance of the baseline of the capture setting, since the difference between images increases with the distance between the optical centers of each camera matrix. Thus, for installations consisting of an array of machine vision cameras located on racks and placed in a room, the obvious choice would be to use conventional image compression methods. Furthermore, based on the assessment of the arbitrariness of video compression methods, it should be noted that the XVC algorithm remains undervalued, although its results are higher. Algorithm AV1 can be considered the next in order of importance. It has been established that the latest compression algorithms show higher performance if compared to their predecessors. It has also been shown that with a small distance between the optical centers of the captured images, the use of video compression algorithms is preferable to the use of image compression algorithms, since they show better results in both three-dimensional and four-dimensional versions.Conclusions. A comparison of the results obtained shows the need to use algorithms from the video compression family (XVC, AV1) on installations with a long baseline (mounted on camera stands). When working with integrated light field cameras (Lytro) and setting the capture with a short baseline, it is recommended to use image compression algorithms (JPEG). In general, video compression algorithms are recommended, in particular XVC, since on average it shows an acceptable level of PSNR in both the case of a short and long installation baseline.

Publisher

RTU MIREA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3