High-temperature terahertz quantum-cascade lasers: design optimization and experimental results

Author:

Ushakov D. V.1ORCID,Afonenko A. A.1,Glinskiy I. A.2ORCID,Khabibullin R. A.3ORCID

Affiliation:

1. Belarusian State University

2. Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences

3. Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences; Ioffe Institute

Abstract

Objectives. Terahertz quantum-cascade lasers (THz QCLs) are compact solid-state lasers pumped by electrical injection to generate radiation in the range from 1.2 to 5.4 THz. The THz QCL operating frequency band contains absorption lines for a number of substances that are suitable for biomedical and environmental applications. In order to reduce the size and cost of THz QCLs and simplify the use of THz sources in these applications, it is necessary to increase the operating temperature of lasers.Methods. To calculate electron transport in THz QCLs, we used a system of balance equations based on wave functions with reduced dipole moments of tunnel-bound states.Results. As a result of the calculations, an original band design with a period based on three GaAs/Al0.18Ga0.82As quantum wells (QWs) and a gain maximum at about 3.3 THz was proposed. Based on the developed design, a THz QCL was fabricated, including the growth of a laser structure by molecular beam epitaxy, postgrowth processing to form strip lasers with a double metal waveguide, as well as an assembly of lasers mounted on a heat sink. The developed THz QCLs was capable of lasing at temperatures of up to 125 K as predicted by the performed calculations. We also studied band designs based on two GaAs/AlxGa1–xAs QWs having varying aluminum contents in the barrier layers (x = 0.20, 0.25, and 0.30).Conclusions. The calculated temperature dependences of the peak gain for two-QW designs with x > 0.2 confirm the possibility of creating THz QCLs operating at temperatures above 200 K. Thus, we have proposed two-QW band designs that outperform existing high-temperature designs in terms of maximum operating temperature.

Publisher

RTU MIREA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3