Algorithms for the visual analysis of an environment by an autonomous mobile robot for area cleanup

Author:

Beliakov M. E.1ORCID,Diane S. A. K.1ORCID

Affiliation:

1. MIREA – Russian Technological University

Abstract

Objectives. At present, increasing rates of pollution of vast areas by various types of household waste are becoming an increasingly serious problem. In this connection, the creation of a robotic complex capable of performing autonomous litter collection functions becomes an urgent need. One of the key components of such a complex comprises a vision system for detecting and interacting with target objects. The purpose of this work is to develop the underlying algorithmics for the vision system of robots executing area cleaning functions.Methods. Within the framework ofthe proposed structure ofthe system for visual analysis ofthe external environment, algorithms for detecting and classifying objects of various appearance have been developed using convolutional neural networks. The neural network detector was set up by gradient descent on the open dataset of TACO training samples. To determine the geometric parameters of a surface in the field of view of the robot and estimate the coordinates of objects on the ground, a homography matrix was formed to take into account information about the characteristics and location of the video camera.Results. The developed software and algorithms for a mobile robot equipped with a monocular video camera are capable of implementing the functions of neural network detection and classification of litter objects in the frame, as well as projection of found objects on a terrain map for their subsequent collection.Conclusions. Experimental studies have shown that the developed system of visual analysis of the external environment of an autonomous mobile robot has sufficient efficiency to solve the tasks of detecting litter in the field of view of an autonomous mobile robot.

Publisher

RTU MIREA

Subject

General Materials Science

Reference15 articles.

1. Черняева Т.К. Актуальные проблемы влияния отходов производства и потребления на объекты окружающей среды и состояние здоровья населения (обзор). Гигиена и санитария. 2013;3:32–35. [Chernyaeva T.K. Actual problems of the impact of production and consumption waste on environment and public health (review of literature). Gigiena i sanitariya = Hygiene and Sanitation. 2013;3:32–35 (in Russ.).]

2. Bansal S., Patel S., Shah I., Patel A., Makwana J., Thakker R. AGDC: Automatic Garbage Detection and Collection. arXiv preprint arXiv:1908.05849. 2019. https://doi.org/10.48550/arXiv.1908.05849

3. Howard A.G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M., Adam H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861. 2017. https://doi.org/10.48550/arXiv.1704.04861

4. Карпов В.Э. ПИД-управление в нестрогом изложении. М.: НИИ информационных технологий; 2012. 34 с. URL: http://radioservice.at.ua/_fr/0/Karpov_mobline1. pdf [Karpov V.E. PID-upravlenie v nestrogom izlozhenii (PID-Control in a Loose Presentation). Moscow; 2012. 34 р. (in Russ.). URL: http://radioservice.at.ua/_fr/0/ Karpov_mobline1.pdf]

5. Salmador A., Cid J.P., Novelle I.R. Intelligent Garbage Classifier. Int. J. Interact. Multimedia Artif. Intell. 2008;1(1):31–36.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Card with Biometric Authentication Using a Fingerprint Scanner;2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3