LOW-WASTE TECHNOLOGY OF GLYCIDOL PRODUCTION BY PEROXIDE METHOD

Author:

Leont'eva S. V.1,Flid M. R.2,Trushechkina M. A.2,Babotina M. V.2,Flid V. R.1,Sulimov A. V.3

Affiliation:

1. MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)

2. LLC Research Engineering Center "Sintez"

3. Dzerzhinsky Polytechnic Institute

Abstract

A technological process of manufacturing glycidol designed for the production capacity of 10 thousand tons per year and consisting in the direct oxidation of allyl alcohol with an aqueous solution of hydrogen peroxide in the presence of nanostructured titanium silicate in methanol is proposed. Due to the exothermic process, the solvent is not only a homogenizer of the mixture of the initial reagents of the epoxy process - allyl alcohol and hydrogen peroxide ensuring their interaction on the surface of the solid catalyst: it also prevents overheating of the reaction mass. On the basis of the research trial of the process the optimal parameters of the process were determined: temperature 30-40 °C; pressure 0.25 MPa; the initial hydrogen peroxide : allyl alcohol ratio = 1:(3-4) mass., methanol concentration in the reaction mixture 12-13 mol/l. Hydrogen peroxide conversion is 98%, the yield of the glycidol - 94%, the selectivity is no less than 95%. The process includes three main stages: (1) raw materials preparation, (2) liquid-phase epoxidation of allyl alcohol, (3) distillation of the target product. The scheme involves recirculation of unreacted allyl alcohol and the solvent - methanol. The developed technological process provides the following indicators (per 1 t of commercial glycidol): consumption of allyl alcohol no more than 0.843 t; consumption of hydrogen peroxide no more than 0.50 t (calculated for 100% hydrogen peroxide); consumption of methanol is no more than 0.022 tons All the waste products correspond to the 3-rd or 4-th hazard class.

Publisher

RTU MIREA

Reference14 articles.

1. Gus’kov A.K., Makarov M.G., Shvets V.F. the reactivity of alcohols and glycols in reactions with α-oxides. Kinetika i kataliz = Kinetics and Catalysis. 1997; 38(5): 660-665. (in Russ.)

2. Kozlovskiy I.A., Kozlovskiy R.A., Koustov A.V., Makarov M.G., Suchkov J.P., Shvets V.F. Kinetics and products distribution of selective catalytic hydration of ethylene- and propylene oxides in concentrated aqueous solutions. Organic Process. Research & Development. 2002; 6(5): 660-664. DOI: 10.1021/op010099.

3. Platé N., Slivinsky E. Fundamentals of chemistry and technology of monomer. Moscow: Nauka Publ.: MAIK “Nauka / Interperiodika”, 2002. 696 p. (in Russ.)

4. Timofeev V.S., Serafimov L.A. The principles of technology of general organic and petrochemical synthesis. М.: Vysshaya shkola Publ., 2003. 536 p. (in Russ.)

5. Nikolaev A.F., Kryzhanovskii V.K., Burlov V.V. [et al.] The technology of polymeric materials. Ed. by V.K. Kryzhanovsky. Saint Petersburg: Professiya Publ., 2008. 544 p. (in Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3