Classification and Evaluation of Sleep Disorders Using Random Forest Algorithm in Health and Lifestyle Dataset

Author:

Widyastuty Wiwiek,Azis Mochammad Abdul

Abstract

Sleep is a fundamental aspect of human life, accounting for approximately one-third of our existence and playing a crucial role in the restoration of physical health and overall quality of life. However, poor sleep quality can interfere with these critical restorative processes, leading to disorders such as apnoea and insomnia. These conditions not only impair daily performance but also have long-term health consequences. Furthermore, the challenges imposed by modern lifestyles have increased the prevalence of these sleep disorders, emphasizing the need for effective diagnostic tools. This research aims to harness the capabilities of Machine Learning (ML), specifically the Random Forest algorithm, to detect and analyse patterns indicative of sleep disorders in collected data sets. Random Forest is particularly suited for this task due to its ability to manage complex data sets by building multiple decision trees, thus creating a comprehensive and robust model for classifying sleep disorders. The findings of the study are promising, showing that the Random Forest algorithm can achieve a high level of accuracy in sleep disorder detection. The model demonstrated a test accuracy rate of 97.33%, with a precision of 96%, and a recall rate of 100%. Additionally, it achieved an F1-Score of 98% and a Kappa Score of 0.945, validating the reliability of this algorithm in producing precise classifications. This research offers significant insights into the patterns of sleep disorders and contributes to the development of targeted interventions aimed at improving sleep quality. Ultimately, this could significantly enhance the quality of life for individuals suffering from sleep disorders.

Publisher

Institut Teknologi Dirgantara Adisutjipto (ITDA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3