Combatting Heart Diseases: Advanced Predictions Using Optimized DNN Architecture

Author:

Azis Mochammad Abdul,Sumarna Sumarna

Abstract

Heart disease has become a global health issue and is recorded as one of the primary causes of death in many countries. In this modern era, with rapid technological advancements and shifting lifestyles, numerous factors contribute to the increasing prevalence of heart diseases. These range from dietary habits, lack of physical activity, stress, to genetic factors. Given the complexity of this ailment, information technology plays a crucial role in providing innovative solutions. One of them is predicting the risk of heart disease, enabling more targeted early prevention and treatment interventions.Correct data analysis is pivotal in making predictions. However, a common challenge often encountered is the imbalance in data classes, which can result in a predictive model being biased. This is certainly detrimental, especially in the context of predicting strokes, where prediction accuracy can mean the difference between life and death.In this research, our focus was on developing a Deep Neural Network (DNN) Architecture model. This model aims to offer more accurate predictions by considering data complexities. By optimizing several key parameters, such as the type of optimizer, learning rate, and the number of epochs, we strived to achieve the model's best performance. Specifically, we selected Adagrad as the optimizer, set the learning rate at 0.01, and employed a total of 100 epochs in its training.The results obtained from this research are quite promising. The optimized DNN model displayed an accuracy score of 0.92, precision of 0.92, recall of 0.95, and an f-measure of 0.93. This indicates that with the right approach and meticulous optimization, technology can be a highly valuable tool in combatting heart diseases.

Publisher

Institut Teknologi Dirgantara Adisutjipto (ITDA)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3