Analysis of Deep Learning Approach Based on Convolution Neural Network (CNN) for Classification of Web Page Title and Description Text

Author:

Murdiyanto Aris Wahyu,Habibi Muhammad

Abstract

The volume of digital documents available online is growing exponentially due to the increasing use of the internet. Categorization of information obtained online is needed to make it easier for recipients of information to determine and filter which information is needed. Classification of web pages can be based on titles and descriptions, which are text data that can be done by utilizing deep learning technology for text classification. This study aimed to conduct data training and analysis experiments to determine the accuracy of the proposed deep learning architecture in classifying web page titles and descriptions. In this research, we proposed a Convolution Neural Network (CNN) architecture that generates few parameters. The training and evaluation set was conducted on the web page dataset provided by DMOZ. As a result, the proposed CNN architecture with the number of N (Dropout + 1D Convolution + ReLU activation) equal to 1 achieves the best validation accuracy. It achieves 79.51% with only generates 825,061 parameters. The proposed CNN architecture achieved outperformed performance on the accuracy of the five other technologies in the state-of-the-art.

Publisher

Institut Teknologi Dirgantara Adisutjipto (IDTA)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3