Implementation of PSO algorithm on MPPT PV System using Arduino Uno under PSC

Author:

Wirateruna Efendi S,Afroni Mohammad Jasa,Ayu Annisa Fitri

Abstract

The availability of fossil energy sources decreases as consumers' demand for electrical energy increases rapidly. Currently, the utilization of renewable energy sources is crucial. PV is a renewable energy source that converts photon energy into DC current. Maximum power point tracker (MPPT) control technology for photovoltaics has advanced significantly. PV is unique in that its P-V characteristic curve is non-linear. Conditions of partial shading can cause the P-V curve to have multiple peaks. This research will design MPPT PV using the Particle Swarm Optimization (PSO) algorithm in partially shaded conditions with an Arduino Uno and boost converter. Conventional algorithms, incremental conductance (IC), and Perturb and Observe (P&O) are implemented as a comparison. The purpose of implementing the PSO algorithm is to find the global peak of power to minimize power losses of PV. It leads to optimal power in case of partial shading conditions. Two PV modules are arranged in series for MPPT in a partially shaded environment. The examination was conducted in a darkened room with spotlights. The mean absolute percentage error of the current sensor, INA219, and the voltage sensor, voltage divider, was less than 1% during testing. The MPPT PV system test results indicate that the PSO algorithm can extract approximately 1.64 Watts of average power. In contrast, the IC and P&O algorithms can extract about 1.25 Watts and 1.41 Watts, respectively. When no algorithm exists in the control system, the extracted power is approximately 1.13 watts. Thus, the PSO algorithm tracks global or optimal power under partial shading conditions.  

Publisher

Dr. Soetomo University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3