Sparse and limited-angle CT image reconstruction using dictionary learning constrained by L1 norm

Author:

Gou Jun-Nian,Zhai Pan-Pan,Dong Hai-Ying

Abstract

Reconstructed images from computed tomography (CT) using the algebraic reconstruction technique (ART) and simultaneous ART (SART) algorithms often suffer from obvious artefacts when only sparse and limited-angle projection data are available. Using the ability of dictionary learning (DL) in image feature extraction and sparse signal representation, a new iterative reconstruction algorithm, ART-DL-L1, is proposed to overcome the aforementioned limitations. This new algorithm is based on DL and an L1 norm constraint, combined with ART. An alternate iterative solving strategy based on an approach of 'ART first, then adaptive dictionary learning' is suggested and is explicitly described in a flowchart depicting the ART-DL-L1 algorithm. For both a noisy projection of 360° sparse data and limitedangle data of 120°, simulation reconstruction results from the classic Shepp-Logan image obtained using ART-DL-L1 appear to be better than those obtained using SART and total variation (TV) algorithms and also better than the cutting-edge ART-DL-L2 algorithm. Five evaluation metrics corresponding to the root-mean-square error (RMSE), the mean absolute error (MAE), the peak signal-to-noise ratio (PSNR), the residuals and the structural similarity (SSIM) index are adopted to estimate the reconstruction effect. The results suggest that the five metrics obtained using ART-DL-L1 outperform those obtained using the other three algorithms. The impact of using patches of various sizes played by the DL part in ART-DL-L1 is considered in the simulations and the patch size achieving the best reconstructed image quality is identified in this case as 25 (5 × 5). Overall, the proposed ART-DL-L1 algorithm may reduce artefacts and suppress noise from incomplete noisy projection CT imaging to some degree.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3