A novel bevel gear fault diagnosis method based on ensemble empirical mode decomposition and support vector machines

Author:

Yanqiang Sun,Hongfang Chen,Zhaoyao Shi,Liang Tang

Abstract

A novel analysis method is proposed based on ensemble empirical mode decomposition (EEMD) and support vector machines (SVMs) for the fault diagnosis of bevel gears. Firstly, the EEMD method is used to decompose the fluctuations in the original gear noise signals into different timescales so as to obtain several intrinsic mode functions (IMFs). The meshing frequency components in the decomposition results are reconstructed to eliminate the influence of interference noise. Then, time-synchronous averaging (TSA) is applied in further denoising to weaken signals independent of the gear meshing frequency. After denoising, various signal characteristics are calculated. Obvious signal characteristics for different fault states are selected as a set of feature vectors. Finally, a particle optimisation method is used to optimise SVM parameters and the feature vectors are input as training samples into an SVM in order to achieve fault recognition. The experimental results show that this novel analysis method can effectively diagnose different conditions of the bevel gear and achieve an identification rate for gear faults of 98.33%.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3