Deep learning-based defect detection in industrial CT volumes of castings

Author:

Dakak A R1,Kaftandjian V1,Duvauchelle P1,Bouvet P2

Affiliation:

1. University of Lyon, INSA Lyon, LVA EA677, 69621 Villeurbanne, France

2. Centre Technique des Industries de la Fonderie (CTIF), S??vres, France

Abstract

Industrial X-ray computed tomography (CT) has proven to be one of the most powerful non-destructive testing (NDT) methods for the inspection of light metal castings. The generated CT volume allows for the internal and external geometry of the specimen to be measured, casting defects to be localised and their statistical properties to be investigated. On the other hand, CT volumes are very prone to artefacts that can be mistaken for defects by conventional segmentation algorithms. These artefacts require trained operators to distinguish them from real defects, which makes CT inspection very time consuming if it is to be implemented on the production line. Foundries using this inspection method are constantly looking for a module that can perform this interpretation automatically. Based on CT data of aluminium alloy automotive and aerospace specimens provided by industrial partners, an automated approach for the analysis of discontinuities inside CT volumes is developed in this paper based on a two-stage pipeline: 2D segmentation of CT slices with automatic deep segmentation using U-Net to detect suspicious greyscale discontinuities; and classification of these discontinuities into true alarms (defects) or false alarms (artefacts and noise) using a new convolutional neural network classifier called CT-Casting-Net. The choice of each model and the training results are presented and discussed, as well as the efficiency of the approach as an automatic defect detection algorithm for industrial CT volumes using metrics relevant to the field of non-destructive testing. The approach is tested on six new CT volumes with 301 defects and achieves an object-level recall of 99%, a precision of 87% and a voxel-level intersection-over-union (IoU) of 62%.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3