Development of digital tools to enable remote ultrasonic inspection of fusion reactor in-vessel components

Author:

Sanderson R1,Sanderson A1,Akowua K,Livesey H2

Affiliation:

1. Full Matrix Ltd, 27 Harcombe Road, Cambridge CB1 9PD, UK

2. Atomic Energy Authority (UKAEA), Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

Abstract

The feasibility of a new approach for pipe inspection has been explored using digital twins to enhance guided wave inspection. Guided wave inspection is well established in the oil & gas industry to remotely screen long lengths of predominately straight pipeline for corrosion. However, the inspection of complex pipe geometries remains a challenge. Nuclear fusion facilities are one such potential application. Fusion reactors have a network of many kilometres of service pipes with complex features, including multiple pipe bends. Some of these pipes could be used for actively cooling components such as the first wall and divertor. Guided ultrasonic wave inspection has the significant advantage of offering 100% coverage of the pipe wall over tens of metres of pipe from a remote test location. This is a highly attractive feature, particularly in the nuclear industry where it is important that human presence in high-risk areas is prohibited due to high radiation doses and temperatures. In this work, finite element wave propagation models have been investigated as digital twins of fusion reactor components. The models have been used to calculate bespoke excitation signals that will allow for full volumetric inspections of these complex pipes to be carried out from a remote location. For the first time, a digital twin technique has been developed that is predicted to successfully correct the distortion in guided wave signals caused by multiple pipe bends. The technique is predicted to yield an order of magnitude improvement in detection capability over conventional guided wave inspection. The digital twin technique presented here therefore shows significant promise for the future inspection of nuclear fusion power plant pipes.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3