Multi-sensor data fusion reconstruction method for vibration dynamic responses of aerospace structures

Author:

Ye Yumei1,Chen Cheng1,Ma Jinchao1,Yu Zhangyong1

Affiliation:

1. School of Mechanical Technology, Wuxi Institute of Technology, Wuxi 214121, Jiangsu Province, P R China

Abstract

The dynamic responses of key locations are important inputs for the life and reliability assessment of spacecraft structures. Due to the limited sensing resources, most critical responses are difficult to measure directly. A structural dynamic response reconstruction method is necessary. The responses of target locations can be reconstructed based on the empirical mode decomposition (EMD) of measured signals and the modal superposition. However, the structural modal information contained in the measured signal of a single sensor is limited, affecting the reconstruction accuracy. In this paper, a response reconstruction method based on multi-sensor data fusion is proposed. It is applied to a main load-bearing structure of a spacecraft and its typical components to verify its strain response reconstruction effect under random vibration loads. The experimental results show that multi-sensor data fusion improves the strain reconstruction accuracy. The maximum reduction in reconstruction error is from 8.7% to 1.3%. The reconstruction accuracy is further improved with the increase in the number of sensors. The optimal weighted fusion strategy for this problem is the weights defined by the Euclidean distance (EUC) or the dynamic time warping distance (DTW). The fusion results show a better performance with the increase in the power of the defined distance. The proposed multi-sensor fusion method improves the reconstruction accuracy via supplementing structural information to each other and eliminating the instability of single measured signals. More accurate dynamic responses via reconstruction reduce the large input uncertainty in life prediction and lay the foundation for building structural digital twins and managing structural health more effectively.

Publisher

British Institute of Non-Destructive Testing (BINDT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3