Small-sample fault diagnosis study of rolling bearings based on a residual parameterised convolutional capsule network

Author:

Chai Jingxuan1,Zhao Xiaoqiang1,Cao Jie1

Affiliation:

1. College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou, China

Abstract

Although intelligent fault diagnosis has achieved good results, the application in practical engineering scenarios is still unsatisfactory due to the lack of sufficient fault signals to support the training of the diagnosis methods and the difficulty of extracting sensitive fault features from the original signals. To address the problem that small-sample fault data limit the diagnostic performance of traditional neural networks, a multi-scale residual parametric convolutional capsule network (MRCCCN) for small-sample bearing fault diagnosis is proposed. In the MRCCCN, the input fault information is averaged and segmented multiple times and then the initial features of the multi-segmented input are extracted by residual parameterised convolution. Then, the multi-branch features are fused and fed into an improved parametric capsule network to further extract fault features and store feature information using dynamic routing. The performance of the MRCCCN is validated using the Case Western Reserve University (CWRU) rolling bearing dataset and the Paderborn University rolling bearing dataset of vibration signals and compared with some advanced deep learning methods. The comparison results show that the proposed MRCCCN is able to accurately diagnose faults under small-sample conditions and still has significant diagnostic performance in small-sample variable noise tests.

Publisher

British Institute of Non-Destructive Testing (BINDT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3