Wind turbine blades fault detection using system identification-based transmissibility analysis

Author:

Wang Xuefei1,Zhang Long1,Heath W P1

Affiliation:

1. Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, UK

Abstract

Wind turbines (WTs) are extensively installed nowadays and the blades are integral components within the WT systems. Condition monitoring and fault diagnosis (CMFD) for WT blades is challenging due to the fact that they usually suffer from non-stationary time-varying loads and the load information is often unknown or hard to collect. This paper proposes system identification-based transmissibility function (TF) methods to effectively detect the blade defects and further help to prevent potential economic loss. The novelty is that the proposed methods only use output response information in the time domain, which can therefore remove the impact of the input excitation. Four different models are used in this work to estimate the blade structure system parameters, including the autoregressive with eXogenous input (ARX) model, the autoregressive moving average with eXogenous input (ARMAX) model, the output error (OE) model and the non-linear ARX polynomial model. Regularisation is then employed to address the overfitting issues that may occur during parameter estimation. The effectiveness of the proposed methods are demonstrated in the laboratory using three naturally damaged industrial-scale WT blades.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural Frequency Transmissibility for Detection of Cracks in Horizontal Axis Wind Turbine Blades;Sensors;2024-07-10

2. CHAIN FAULT IDENTIFICATION AND POWER GRID PLANNING OPTIMISATION IN POWER SYSTEMS CONSIDERING MULTIPLE SCENARIOS, 1-14.;International Journal of Power and Energy Systems;2024

3. Anomaly-based fault detection in wind turbine main bearings;Wind Energy Science;2023-04-14

4. Marine Vessel Detection in Sea Fog Environment Based on SSD;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

5. Remaining Useful Life Estimation of Cutting Tools Using Bayesian Augmented Lagrangian Algorithm;2022 IEEE 31st International Symposium on Industrial Electronics (ISIE);2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3