Affiliation:
1. Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, UK
Abstract
Wind turbines (WTs) are extensively installed nowadays and the blades are integral components within the WT systems. Condition monitoring and fault diagnosis (CMFD) for WT blades is challenging due to the fact that they usually suffer from non-stationary time-varying loads and the load
information is often unknown or hard to collect. This paper proposes system identification-based transmissibility function (TF) methods to effectively detect the blade defects and further help to prevent potential economic loss. The novelty is that the proposed methods only use output response
information in the time domain, which can therefore remove the impact of the input excitation. Four different models are used in this work to estimate the blade structure system parameters, including the autoregressive with eXogenous input (ARX) model, the autoregressive moving average with
eXogenous input (ARMAX) model, the output error (OE) model and the non-linear ARX polynomial model. Regularisation is then employed to address the overfitting issues that may occur during parameter estimation. The effectiveness of the proposed methods are demonstrated in the laboratory using
three naturally damaged industrial-scale WT blades.
Publisher
British Institute of Non-Destructive Testing (BINDT)
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献