A method for quantitative identification of magnetic flux leakage of fatigue cracks in ferromagnetic components

Author:

Hong Li,Cai Jianxian,Wu Yanxiong,Yao Zhenjing,Qiu Zhongchao,Teng Yuntian

Abstract

A modelling method integrating principal component analysis (PCA) and the least-squares support vector machine with particle swarm optimisation (PSO-LSSVM) is proposed to address the difficulties in quantitative identification of fatigue cracks. The widths and depths of fatigue cracks are quantitatively identified by establishing a non-linear mapping relationship between these dimensions and magnetic flux leakage (MFL) signals. A series of fatigue crack samples are prepared through the fatigue tensile test for the MFL detection system. A sample library is established through MFL experimentation to verify the feasibility of the method for quantitative identification of fatigue cracks based on PSO-LSSVM. The results indicate that the method is in a position to effectively and quantitatively identify the widths and depths of fatigue cracks less than 1 mm in size with a maximum error of approximately 0.3 mm.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3