Fault diagnosis for rolling bearings based on generalised dispersive mode decomposition and accugram

Author:

Zhong Xianyou1,He Liu1,Wan Gang2,Zhao Yang2

Affiliation:

1. Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance, China Three Gorges University, Yichang 443002, China

2. China Yangtze Power Co Ltd, Yichang 443002, China

Abstract

Bearing fault diagnosis helps to ensure the safe operation of electromechanical equipment and reduce unnecessary losses due to downtime. The interference of noise in the signal poses a challenge in the effective identification of rolling bearing faults. To address the above problems, this paper proposes a rolling bearing fault diagnosis (RBFD) method based on generalised dispersive mode decomposition (GDMD) and an accugram. Firstly, the bearing signal is decomposed using GDMD and the optimal number of decomposition modes is chosen using a new index based on the correlation coefficient and accuracy. According to the number of determined decomposition modes, the fault signal is reconstructed. Then, the centre frequency and bandwidth of the resonant frequency are determined using an accugram. Finally, the fault signal is filtered and analysed using a square envelope spectrum to achieve rolling bearing fault diagnosis. Experimental signal analysis verifies the effectiveness and feasibility of the method. The method is applied to the early fault diagnosis of rolling bearings and compared with kurtogram and accugram results. The results show that the approach can not only effectively avoid the interference of external impacts but it can also correctly recognise the fault characteristic frequency band.

Publisher

British Institute of Non-Destructive Testing (BINDT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3