Ball bearing fault detection via multi-sensor data fusion with accelerometer and microphone

Author:

Safizadeh M S,Golmohammadi A

Abstract

Early detection of defects in bearings is essential to avoid the complete failure of machinery and the associated costs. This study presents a novel method for fault diagnosis of bearings using sensor fusion with a microphone and an accelerometer. The system has five modules, namely data acquisition, signal processing, feature extraction, classification and decision-making. A test-rig is designed to collect acoustic and vibration signals. Then, for each signal, indices are calculated in the time and frequency domains. After using principal component analysis (PCA) for feature extraction, the k-nearest neighbours (kNN) method is used in the classification module. Finally, a decision on the kind of fault and its size is made based on the decision fusion module. The aim of this study is to propose a fusion method to improve the effectiveness and reliability of bearing defect diagnosis compared to what can be achieved with vibration or acoustic measurements alone. The results obtained from this preliminary study show that condition monitoring using the accelerometer is the more effective technique for determining the type of fault, while the microphone is effective for classifying the size of fault. Experimental results also confirm these findings.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3