Multi-criterion analysis-based artificial intelligence system for condition monitoring of electrical transformers

Author:

Gopi Mulpuru,Ranga Chilaka

Abstract

In this present paper, a novel multi-criterion-based fuzzy logic (FL) expert system using different membership functions (MFs) is proposed to determine the overall health index (OHI) of electrical transformers. 30 oil samples from different field transformers installed at various locations in Himachal Pradesh, India, are collected for the analysis and various diagnostic tests are conducted on each of the oil samples. The diagnostic testing data are utilised for the proposed methodology. Initially, the diagnostic data are normalised using the well-known multi-criterion analysis (MCA) method. The normalised input data are grouped into three grades, ie total dissolved combustible gases (TDCGs), oil insulation and paper insulation. Furthermore, a fuzzy logic model is designed based on the three different grades. Output health indices are determined for each of the samples. Comparison and validation of the proposed model is conducted with the expert model, as well as the preknown health status of 150 transformers installed in the Gulf region. The expert model is designed with a trapezoidal membership function, whereas the proposed model considers the popular Gauss-2. From the comparison, it is observed that the accuracy of the proposed model is 98%, while the accuracy of the expert model is 96%, making the proposed model more accurate. Moreover, a plan of action for proper maintenance is also recommended for each transformer, based on the evaluated health index. The proper maintenance of transformers leads to improvements in their service life. The present work is beneficial not only for transformer utilities but also for customers. The model is straightforward to understand, even for inexperienced staff and maintenance managers.

Publisher

British Institute of Non-Destructive Testing (BINDT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3