Loaded and unloaded tooth contact analysis of spiral bevel gears in consideration of misalignments

Author:

Moslem M1,Zippo A1,Iarriccio G1,Bergamini L1,Pellicano F1

Affiliation:

1. Centre InterMech MoRe, Università degli Studi di Modena e Reggio Emilia, Modena, Italy

Abstract

Bevel gear pairs are employed extensively in transmission systems, such as vehicle transmissions (rear axle drive), aircraft engines/turbines and helicopter gears, to transfer power between non-parallel shafts at high speed or high torque. The most complex form of bevel gear is the spiral bevel gear (SBG). SBG pairs are commonly used in applications that require high load capacity at higher operating speeds than are typically possible with other types of bevel gear. When manufactured in a metal-cutting process, spiral bevel gears can either be produced using single indexing (a face-milling method, which is considered in this study) or continuous indexing (a face-hobbing method). Due to manufacturing imperfections and the flexibility of components, the system might experience misalignments that intensify or exert a destructive effect on the gear vibration, which causes disruption in the stress distribution, thereby decreasing the lifetime of the gearbox. The main purpose of this study is to carry out loaded tooth contact analysis (LTCA) and unloaded tooth contact analysis (UTCA) for an SBG pair in the presence of two types of misalignment, axial and radial misalignment, and represent their effects on the mesh stiffness (MS). To calculate the MS, it is essential to determine the geometrical mismatch between two mating tooth profiles by means of UTCA. To conduct LTCA, three main approaches can be utilised: the finite element method (FEM) and experimental and analytical approaches. Due to the development of software packages during the last decade, Transmission3D-Calyx, an FEM-based software, is used in this study to carry out LTCA and UTCA. Finally, the MS for different misalignment cases is compared to represent the effect of misalignment on the SBG pair.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Reference2 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3