A generalised machine learning model based on multinomial logistic regression and frequency features for rolling bearing fault classification

Author:

Kiakojouri A1,Lu Z2,Mirring P3,Powrie H4,Wang Ling1

Affiliation:

1. National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering, University of Southampton, Southampton SO17 1BJ, UK

2. Southampton Statistical Sciences Research Institute (S3RI), School of Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, UK

3. Schaeffler Technologies AG & Co KG, Georg-Schäfer-Straße 30, 97421 Schweinfurt, Germany

4. GE Aviation, School Lane, Chandler's Ford, Eastleigh SO53 4YG, UK

Abstract

Intelligent fault classification of rolling element bearings (REBs) using machine learning (ML) techniques increases the reliability of industrial assets. One of the main issues associated with ML model development is the lack of training data and, most importantly, the ability of models to be used for applications without specific training data, ie the generalisation capability of models. This study investigates the feasibility of using multinomial logistic regression (MLR) as generalised ML models for rolling element bearing fault classification without the requirement of training data for new bearing designs and varied machine operations. This has been achieved by using bearing characteristic frequencies (BCFs) as inputs to the MLR models extracted by a newly developed hybrid method. The new method combines cepstrum pre-whitening (CPW) and full-band enveloping, which can effectively identify the BCFs in vibration data from various machines. This paper presents the methods of the feature extraction and the development of generalised ML models for REBs based on data from the EU Clean Sky 2 I2BS project1. This model is then validated by data from Case Western Reserve University (CWRU) and the Society for Machinery Failure Prevention Technology (MFPT), available in the public domain without further training.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3