Welding defect detection in nuclear power plant spent fuel pool panels based on alternating current field measurement: experimental and finite element analysis

Author:

Zhou Zhaoming1,Yang Chunfu1,Liu Liyan2,Zhao Donghong2,Li Kai3

Affiliation:

1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China

2. Lanchengyu Oil Transmission Branch of State Pipeline Group Southwest Pipeline Co Ltd, Chengdu 610096, China

3. State Nuclear Power Plant Service Company, Shanghai 200233, China

Abstract

The overlay panels of spent fuel pools of nuclear power plants can easily become corroded and produce micro-crack defects. Surface crack defects tend to expand vertically, horizontally and obliquely, causing damage and fracture to the overlay panels and welds of spent fuel pools. Traditional non-destructive testing (NDT) cannot complete underwater testing in real time. In order to improve the timeliness of crack detection and shorten the inspection period, research on accurate inspection technology for surface cracks in the overlay panels of spent fuel pools is carried out in this paper based on alternating current field measurement (ACFM) and the weld defect detection process for the cladding panels of spent pools is optimised. In this work, different types of artificial defect are assumed and the distortion of the magnetic field characteristic signal caused by the defects is studied. The characteristics of magnetic field signals generated in different defect regions are studied by establishing a defect electromagnetic detection model for numerical calculation. Finally, experimental and numerical results are compared and analysed. The results show that ACFM can be used to quickly and effectively inspect for cracks in the base material, weld and interface of spent fuel pool overlay panels and it has the characteristics of accuracy, high resolution, high sensitivity and low delay. The research results, which have good application value, provide technical support for electromagnetic inspection of latent cracks in field spent fuel pools and early crack warning of underwater structural defects.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3